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Smooth Transition Regression models can be specified, estimated, and checked in JMulTi .

Analyzing nonlinear models of the STR type with JMulTi is described in greater detail in

Teräsvirta (2004). This helpsection is just a short summary for the user who already has

some theoretical background.
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1 The Model

The standard STR model with a logistic transition function allowed for in JMulTi has the

form

yt = φ′zt + θ′ztG(γ, c, st) + ut, ut ∼ iid(0, σ2)

G(γ, c, st) =

(
1 + exp{−γ

K∏

k=1

(st − ck)}
)−1

, γ > 0

where zt = (wt
′,xt

′)′ is an ((m + 1) × 1) vector of explanatory variables with wt
′ =

(1, yt−1, . . . , yt−p)
′ and xt

′ = (x1t, . . . , xkt)
′. φ and θ are the parameter vectors of the linear

and the nonlinear part respectively. The transition function G(γ, c, st) depends on the tran-

sition variable st, the slope parameter γ and the vector of location parameters c. In JMulTi

only the most common choices for K are available, K = 1 (LSTR1) and K = 2 (LSTR2).

The transition variable st can be part of zt or it can be another variable, like for example

st = t (trend).

1.1 The Modelling Cycle

The modelling cycle suggested by the implementation in JMulTi consists of the three stages:

specification, estimation and evaluation.

1. Specification starts with setting up a linear model that forms a starting point for

the analysis. It can be modelled by using the VAR framework. The second part of

specification involves testing for nonlinearity, choosing st and deciding whether LSTR1

or LSTR2 should be used.

2. Estimation involves finding appropriate starting values for the nonlinear estimation

and estimating the model.

3. Evaluation of the model usually includes graphical checks as well as various tests for

misspecification, such as error autocorrelation, parameter nonconstancy, remaining

nonlinearity, ARCH and nonnormality.
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2 Specifying the AR Part

The first step of the specification of an STR model is to select the linear AR model to start

from. The selection mechanism allows to choose one endogenous variable yt and an arbitrary

number of exogenous (xt) and deterministic variables. The maximum lag order for yt and

xt determines the number of lags to include. Lags of yt and xt can be excluded again via

setting subset restrictions. A constant is always included, seasonal dummies can be added

via a button. Because the linear part must be stationary, there is no option to include a

trend.

Figure 1: Specification of AR Part

2.1 Transition Variable

The transition variable st must be part of the selected variables or lags of these variables if

it is not a trend. If st is not part of zt, then it can be excluded from zt via setting subset

restrictions. One can also set st = t in later stages, in that case it does not have to be

included.

2.2 Smooth Trend

It is possible to specify a smooth trend model

yt = φ0 + θ0G(γ, c, t) + ut

by just including yt with zero lags and specifying TREND as st in the estimation.

2.3 Excluding Variables and Lags

The subset panel allows to impose exclusion restrictions on the selected variables by just

clicking on the corresponding parameter and setting it to 0. To find those restrictions one

could apply a subset search routine implemented in the VAR model part of JMulTi . The

excluded variables can still be used as transition variables but they are excluded from both,
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Figure 2: Subset Restrictions on the AR Part

the linear and nonlinear part, by setting φi = θi = 0. Other restrictions on the parameter

space can be set in later stages of the analysis.
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3 Testing Linearity

The test can be used to check, whether there is a nonlinearity of the STR type in the model.

It also helps to determine the transition variable and whether LSTR1 or LSTR2 should be

used. The following auxiliary regression is applied if st is an element of zt:

yt = β′0zt +
3∑

j=1

β′j z̃ts
j
t + u∗t (1)

whith zt = (1, z̃t)
′. In case st is not part of zt:

yt = β′0zt +
3∑

j=1

β′jzts
j
t + u∗t

The null hypothesis of linearity is H0 : β1 = β2 = β3 = 0. In JMulTi this linear restriction is

checked by applying an F test. It is denoted in the output with the F symbol.

3.1 Choosing the Transition Variable

All potential transition variables can be selected in the respective table. The test is then

executed for each of the candidates and the variable with the strongest test rejection (the

smallest p-value) is tagged with the symbol ∗. This can be used as a decision rule for choosing

an appropriate st, especially if the differences are big.

3.2 Imposing restrictions

It is possible to carry out the linearity test under further restrictions about θ. A variable

can be excluded from the nonlinear part if θi = 0. In the linearity test this can be taken

into account by setting elements of βj = 0. In JMulTi this can be done by selecting elements

from the respective table. If all variables are excluded from the nonlinear part, then the test

cannot be computed for st that are part of zt. However, it still works for transition variables

not contained in zt, for example t.

3.3 Numerical Problems

Because in the test regression (1) powers of st are included in the regressor, this might led to

invertibility problems if the elements of st are close to zero or one. In that case the output

is NaN .
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Figure 3: Testing Linearity against STR
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4 Choosing the Type of Model

Once linearity has been rejected, one has to choose whether an LSTR1 or an LSTR2 model

should be specified. The choice can be based on the test sequence:

1. test H04 : β3 = 0

2. test H03 : β2 = 0|β3 = 0

3. test H02 : β1 = 0|β2 = β3 = 0

The test is based on the same auxiliary regression (1) as the linearity test. In JMulTi the

corresponding F-statistics of the null hypothesis H04, H03, H02 are denoted by F4, F3, F2.

The choosen model is explicitely stated. However, if the test sequence does not provide a

clear-cut choice between the alternatives, it is sensible to fit both, an LSTR1 and LSTR2

model and decide on the evalutation stage. This can be done by looking at the information

criteria or at the residual sum of squares.
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5 Finding Initial Values

The parameters of the STR model are estimated by a nonlinear optimization routine. It is

important to use good starting values for the algorithm to work. The gridsearch creates a

linear grid in c and a log-linear grid in γ. For each value of γ and c the residual sum of

squares is computed. The values that correspond to the minimum of that sum are taken as

starting values. It should also be noted that in order to make γ scale-free, it is divided by

σ̂K
s , the Kth power of the sample standard deviation of the transition variable.

5.1 Operating the Gridsearch

Selecting the transition variable For the grid search st has to be known already. The

choice can be based on the linearity test or on a priori knowledge.

Selecting the grid Either LSTR1 or LSTR2 can be choosen. If LSTR2 is selected, then

the grid is constructed over c1, c2, γ, whereas with LSTR1 it is over c1, γ. The corresponding

text fields can be used to adjust the number of gridpoints as well as the overall range of the

parameter. In case of LSTR2, the range and grid for c1, c2 can only be specified jointly.

Plotting the RSS It might be helpful to plot the residual sum of squares as a function

of γ and c. This can be done by selecting the plot option. There is always a surface and a

contour plot. The surface plot displays -RSS, because the maximum is usually better visible

in graphs of this kind. In case of LSTR2 there are 3 parameters that vary, therefore plots

are conditional on distinct values of γ. The number of those plots can be adjusted.

Using the starting values The results of the gridsearch are displayed in the text field.

One should check, whether there is a boundary solution, because this might indicate a

problem. For convenience, the found starting values are automatically inserted in the text

fields for initial values in the estimation panel.
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Figure 4: Grid Search to find Starting Values
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6 Estimation of Parameters

Once good starting values have been found, the unknown parameters c, γ, θ, φ can be es-

timated by using a form of the Newton-Raphson algorithm to maximize the conditional

maximum likelihood function.

6.1 Setting Restrictions

The following types of restrictions are available for estimation:

1. θi = −φi the corresponding parameter will disappear if G(γ, c, st) = 1

2. φi = 0 the corresponding parameter will disappear if G(γ, c, st) = 0

3. θi = 0 the variable will only enter the linear part

A variable can only be selected for one of those restrictions.

Figure 5: Setting Restrictions for Estimation

6.2 Output

The starting values, parameter estimates, standard deviations, t-values and p-values are

displayed for the estimated model separated for the linear and the nonlinear part. The

covariance is computed by

Σ̂β̃ = 2σ̃2

[
δ2S

δβδβ′

]−1∣∣∣∣
β̃

The following statistics are given as well:

1. AIC, SC, HQ

2. R2 and adjusted R2
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3. variance and standard deviation of st

4. variance and standard deviation of estimated residuals

Figure 6: STR Estimation
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7 Testing the STR Model

The quality of the estimated nonlinear model should be checked against misspecification like

in the linear case. The tests for STR models are generalizations of the corresponding tests

for misspecification in linear models.

7.1 Test of No Error Autocorrelation

The test is a special case of a general test described in Godfrey (1988) and has been discussed

in its application to STR models in Teräsvirta (1998). The procedure is to regress the

estimated residuals ũt on lagged residuals ũt−1 . . . ũt−q and the partial derivatives of the

log-likelihood function with respect to the parameters of the model. The test statistic is

then

FLM = {(SSR0 − SSR1)/q}/{SSR1/(T − n− q)}
where n is the number of parameters in the model, SSR0 the sum of squared residuals of

the STR model and SSR1 the sum of squared residuals from the auxiliary regression.

7.2 Test of No Additive Nonlinearity

After the STR has been fitted, it should be checked whether there is remaining nonlinearity

in the model. The test assumes that the type of the remaining nonlinearity is again of the

STR type. The alternative can be defined as:

yt = φ′zt + θ′ztG(γ1, c1, s1t) + ψ′ztH(γ2, c2, s2t) + ut

where H is another transition function and ut ∼ iid(0, σ2). To test this alternative the

auxiliary model:

yt = β′0zt + θ′ztG(γ1, c1, s1t) +
3∑

j=1

β′j z̃ts
j
2t + u∗t

is used. The test is done by regressing ũt on (z̃′ts2t, z̃
′
ts

2
2t, z̃

′
ts

3
2t)

′ and the partial derivatives of

the log-likelihood function with respect to the parameters of the model. The null hypothesis

of no remaining nonlinearity is that β1 = β2 = β3 = 0. The choice of s2t can be a subset of

available variables in zt or it can be s1t. It is also possible to exclude certain variables from

the second nonlinear part by restricting the corresponding parameter to zero. The resulting

F statistics are given in the same way as for the test on linearity.

7.3 Test of Parameter Constancy

This is a test against the null hypothesis of constant parameters against smooth continous

change in parameters. The alternative can be written as follows:

yt = φ(t)′zt + θ(t)′ztG(γ, c, st) + ut, ut ∼ iid(0, σ2)
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where

φ(t) = φ+ λφHφ(γφ, cφ, t
∗)

and

θ(t) = θ + λθHθ(γθ, cθ, t
∗)

with t∗ = t/T and ut ∼ iid(0, σ2). The null hypothesis of no change in parameters is

γθ = γφ = 0. The parameters γ and c are assumed to be constant. The following nonlinear

auxiliary regression is used:

yt = β
′
0zt +

3∑
j=1

β′jzt(t
∗)j +

3∑
j=1

β′j+3zt(t
∗)jG(γ, c, st) + u∗t

In JMulTi the F-test results are given for three alternative transition functions

H(γ, c, t∗) =

(
1 + exp{−γ

K∏

k=1

(t∗ − ck)}
)−1

− 1

2
, γ > 0

with K = 1, 2, 3 respectively and assuming that γθ = γφ.

7.4 ARCH-LM Test

The test on no ARCH is available for STR as well. It is described in the help chapter Initial

Analysis.

7.5 Jarque-Bera Test

The test on normality can be applied. It is described in the help chapter Initial Analysis.
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Figure 7: Diagnostic Tests for STR
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8 Graphical Analysis

Various parts of the estimated STR model can easily be plotted. This can help to detect

problems in the residuals quickly and to illustrate the estimation results.

8.1 Residuals

The estimated residuals

ũt = yt − φ̃′zt + θ̃′ztG(γ̃, c̃, st)

can be plotted in various ways. It is also possible to add them to the dataset. They will

appear as a new variable with the name str resids in the time series list.

8.2 Plotting Parts of the Model

It is possible to plot against t:

1. the transition function G(γ̃, c̃, st)

2. the fitted series φ̃′zt + θ̃′ztG(γ̃, c̃, st)

3. the original series yt

4. the nonlinear part θ̃′ztG(γ̃, c̃, st)

5. the linear part φ̃′zt

6. the transition variable st

It is also possible to plot the transition function as function of transition variable:

G(st) =

(
1 + exp{−γ̃

K∏

k=1

(st − c̃k)}
)−1

with K = 1 for LSTR1 or K = 2 for LSTR2. If Multiple graphs is selected, then every plot

is shown in a separate diagram. The diagrams are arranged arraywise in one window. If this

option is not selected, all plots appear in just one diagram.
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Figure 8: Graphical Analysis
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